KAM tori in 1D random discrete nonlinear Schrodinger model?

نویسندگان

  • Magnus Johansson
  • G Kopidakis
  • S Aubry
  • M. Johansson
  • G. Kopidakis
  • S. Aubry
چکیده

We suggest that KAM theory could be extended for certain infinite-dimensional systems with purely discrete linear spectrum. We provide empirical arguments for the existence of square summable infinite-dimensional invariant tori in the random discrete nonlinear Schrödinger equation, appearing with a finite probability for a given initial condition with sufficiently small norm. Numerical support for the existence of a fat Cantor set of initial conditions generating almost periodic oscillations is obtained by analyzing i) sets of recurrent trajectories over successively larger time scales, and ii) finite-time Lyapunov exponents. The norm region where such KAM-like tori may exist shrinks to zero when the disorder strength goes to zero and the localization length

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

KAM Tori for 1D Nonlinear Wave Equations with Periodic Boundary Conditions

with periodic boundary conditions are considered; V is a periodic smooth or analytic function and the nonlinearity f is an analytic function vanishing together with its derivative at u = 0. It is proved that for “most” potentials V (x), the above equation admits small-amplitude periodic or quasi-periodic solutions corresponding to finite dimensional invariant tori for an associated infinite dim...

متن کامل

Quasi-Periodic Solutions for 1D Schrödinger Equation with the Nonlinearity |u|2pu∗

In this paper, one-dimensional (1D) nonlinear Schrödinger equation iut − uxx + |u|2pu= 0, p ∈N, with periodic boundary conditions is considered. It is proved that the above equation admits small-amplitude quasi-periodic solutions corresponding to 2-dimensional invariant tori of an associated infinite-dimensional dynamical system. The proof is based on infinite-dimensional KAM theory, partial no...

متن کامل

Kam Tori and Absence of Diffusion of a wave-Packet in the 1D Random Dnls Model

When nonlinearity is added to an infinite system with purely discrete linear spectrum, Anderson modes become coupled with one another by terms of higher order than linear, allowing energy exchange between them. It is generally believed, on the basis of numerical simulations in such systems, that any initial wave-packet with finite energy spreads down chaotically to zero amplitude with second mo...

متن کامل

A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions

In this paper, one-dimensional (1D) nonlinear Schrödinger equation iut − uxx +mu+ g(u, ū) ū = 0, with Periodic Boundary Conditions is considered; m / ∈ 1 12Z is a real parameter and the nonlinearity g(u, ū)= ∑ j,l,j+l 4 ajlu j ū , aj l = alj ∈ R, a22 = 0 is a real analytic function in a neighborhood of the origin. The KAM machinery is adapted to fit the above equation so as to construct small-a...

متن کامل

A Variant of Kam Theorem with Applications to Nonlinear Wave Equations of Higher Dimension

The existence of lower dimensional KAM tori is shown for a class of nearly integrable Hamiltonian systems where the second Melnikov’s conditions are relaxed, at the cost of the stronger regularity of the perturbed nonlinear term. As a consequence, it is proved that there exist many linearly stable invariant tori and thus quasi-periodic solutions for nonlinear wave equations of non-local nonline...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010